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It is shown (for a very simplified model) that a number-theoretic function 
representing an experimental physical setup is general recursive. 

1. I N T R O D U C T I O N  

Kreise l  (1976) s ta ted  the  fo l lowing p r o b l e m :  

We consider theories, by which we mean such things as classical or quantum 
mechanics, and ask if every sequence of natural numbers or every real number 
which is well defined (observable) according to the theory must be recursive or, 
more generally, recursive in the data (which, according to the theory, determine 
the observations considered). Equivalently, we may ask whether any such 
sequence of numbers, etc. can also be generated by an ideal computing or Turing 
machine if the data are used as input. 

A s imi la r  p rob l em,  bu t  wi th  respect  to h u m a n  psycho logy  and  art if icial  
in te l l igence ,  was inves t iga ted  by Webb  (1983). He fo rmu la t ed  two theses:  

(M)  All  h u m a n  reason ing  is a mechan ica l  process  ( computa t ion ) .  
(C) Every  "p rec i se ly  desc r ibed"  p iece  o f  h u m a n  behav io r  can  be 

s imula t ed  by  a sui table  p r o g r a m m e d  compute r .  

In  the theory  of  compu tab i l i t y  one formula tes  Church ' s  thesis:  

(CT) Every  "effect ively c o m p u t a b l e "  func t ion  is genera l  recurs ive  ( and  
vice versa) .  

W e b b  gives a rguments  tha t  (CT) is wi th in  an eyelash  o f  imply ing  (C),  
which in turn p rov ides ,  to the  degree  that  exper ience  confirms it, induct ive  
suppor t  for  (M).  Moreover ,  he argues that  G 6 d e l  i ncomple teness  theorems  
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provide an essential core of  support  for (CT) and that (CT) implies that 
any refutation of mechanism must employ noneffective constructions. So 
G6del 's  work supports (M). 

Feynman (1982) considered the possibility of  exact simulation of phys- 
ics by (a digital) computer,  i.e., that the computer  will do exactly the same 
as nature. 

Primas (1972) gives heuristic arguments to support  a straightforward 
physical interpretation of  Church 's  thesis, i.e., that the channel of  a con- 
structable apparatus has to be a computable function in the sense of  Turing. 

In our work we show (for a very simplified model) that if  a number- 
theoretic function f represents a deterministic experimental physical setup, 
then the function is a general recursive one. 

2. F O R M A L I S M  

We give an outline of  a formalized empirical physical theory of an 
apparently trivial kind. The theory is set up by analogy with a first-order 
mathematical  theory. In the language of our theory we would like to describe 
physical experiments understood in a very general sense. A real model of  
the theory could be, e.g., a transmitter (a physical operation),  i.e., a macro- 
scopic object with one input and one output channel. A system prepared 
in some state enters the input channel and after transformation exits the 
output channel. By a transmitter we also can understand the action of 
external fields. So we can have either an approximately instantaneous change 
of the system or a more or less continuous evolution. After the transmission 
process we investigate the properties of  the output system. As another model 
one could take a measuring apparatus. 

Being a physical, our theory should consist of  a mathematical  structure 
(syntax) together with a set of  rules of interpretation (semantics). 

It should be stated clearly that what is presented in this paper  is not 
a realistic picture, but a simplified and idealized schema of the subject 
under investigation. 

2.1. Syntax 

From a syntactical point of  view there is no essential difference between 
an empirical theory and a first-order mathematical  one. The formalized 
language of our theory will comprise signs for natural numbers 
1, 2 , . . . ,  k, n , . . .  and one functional constantf denoting a number-theoretic 
function. Terms are of  the form f(4) ,  f(k), etc. [In some cases we can take 
as terms also expressions like fff(12), etc]. 
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The atomic formulas are identities between terms and compound for- 
mulas are formed from the atomic ones by means of the connectives of  the 
proposit ional calculus. 

2.2. Semantics  

Our theory is an empirical one and therefore we assume that formulas 
can be proved or disproved by means of (finite) operational tests. 

How can one look at a physical experiment? We have a material device 
(represented in our language by the functional constant f ) - - a  certain 
selected port ion of the physical universe- -an  experimental setup. Natural  
numbers 1, 2 , . . .  denote input-output  conditions (pre-postcontrolling con- 
ditions), which can be operationally tested. We assume as usual that there 
is only a countable number  of  properties of a physical system. 

Thus, the symbol " k "  may be regarded as a " label"  which is attached 
to a document giving a description of a construction of input conditions 
with property "k" .  We provide input conditions "k" ,  f runs for a certain 
time; and then we observe the output conditions " l" .  

We assume that our experiments are deterministic ones in the Daniel-  
Gisin (1983) sense, i.e., for one input condition we obtain at most one 
output. Therefore the functional c o n s t a n t f  denoting our experimental setup 
is a number-theoretic function. 

Now the question arises of  whether the function is a computable 
(general recursive) one. 

How can one determine the properties of  our experimental setup f ?  
The setup is a material object and therefore it conforms to the laws of some 
physical theory. Thus, some of its properties can be deduced a priori from 
laws and theorems of the theory. Formulas determining these properties 
form a set of  theoretical statements or meaning postulates. Moreover, perform- 
ing experiments by means of the setup f, we obtain another of its properties 
determined in the language of our theory by formulas which form a set of  
observation statements. 

It is rather obvious that direct observation presents the basic noninfer- 
ential method of validation in empirical science. Observation statements 
are just sentences capable of  being validated by direct observation. One 
can validate such a statement without resorting to any inference--by simply 
observing the objects this statement is about. Thus, the observational state- 
ments lie at the foundations of  the whole of  scientific knowledge; whatever 
is asserted by the scientist is either expressed in observation statements, or 
has been validated by being inferred from observation statements. 

The language L of our theory of the experimental setup f will simply 
be identified with the set of  all its (theoretical and observational) formulas. 
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Moreover,  we assume that the axioms of the classical propositional calculus 
and the identity calculus are valid, together with every formula 

n l ~  n 2 

nl, n2 being distinct numerals; as a sole rule of  inference we take modus 
ponens, i.e., if a, fl are formulas and -~ denotes the operation of logical 
implication then " a " ,  " a  ~ 13" true implies "/3" true. In all languages of  
classical and quantum theories both modusponens and modus tollens remain 
valid forms of  arguments. (Hardegree, 1979). 

Modus ponens as a rule of  inference is a syntactical characterization 
of  the operation of  logical consequence in L. The operation is characterized 
as follows: a is a logical consequence of X (X is a set of  formulas),  
" a  e C n ( X ) , "  if{ there is a p roof  of  a from X (the concept of  p roof  is 
defined along the usual lines). 

A theory then always comprises all of  its logical consequences: Cn(T)  _c 
T; it is thus what logicians call a system (of  logic E). 

The function f is called a model of a theory T i f f  satisfies each formula 
belonging to T. In this way we determine a syntax of a very simple empirical 
theory T. The fundamental  problem here concerns the distinction between 
the empirical and a priori elements inherent in any such theory. We assume 
that a priori (and of course empirical) elements in our theory are in the 
form of finitely testable formulas, i.e., one can in a finite number  of  steps 
determine whether a formula is true or false. 

A theory T is always an infinite set of  statements. We can distinguish 
two cases: A theory for which there exists an effective procedure enabling 
anyone to decide in a finite number  of  predetermined steps whether or not 
any given formula in L is a theorem of the theory is called decidable; one 
that does not satisfy this condition is undeeidable. 

Definition (Przet~cki, 1969). A theory T is said to be axiomatizable if 
all its theorems follow from a decidable subset of  them, that is, if there is 
a decidable set A of formulas, called the set of  axioms, such that T = Cn(A). 

Axiomatization of a theory concerns only its formal presentation; it 
does not presuppose anything with regard to its interpretation and valida- 
tion. Because the known actual empirical theories are axiomatizable, we 
assume the same of our simplified theory of the experimental setup. 

Definition. A function q~ is called a model of a set ~ of  finite formulas 
if ~ satisfies each formula belonging to E. 

It is not sufficient to consider satisfaction by number-theoretic functions 
only. There are many sets of  finite formulas which are satisfiable by some 
function, but not by any number-theoretic function. I f  the function q~ from 
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the above definition is a number-theoretic one, then the model is called 
standard. 

Definition. A theory T is called categorical if it has exactly one standard 
model. 

We assume that our set of theoretical and empirical statements unam- 
biguously determines the experimental setup f, so it is a categorical system. 

Definition. A theory T is complete if for each formula a, a ~ T or 
non-a  c T. 

Definition. A theory T is called consistent if, for no formula a, both 
formulas a and non-a  are theorems in T. 

Theorem (G6del). If  a set of (finite) formulas is consistent, it has a 
model. 

Now we will prove the main theorem of our work. 

Theorem. (1) If  an (empirical) theory T is categorical and has no 
nonstandard models, then it is complete. (2) If  in addition it is axiomatizable, 
then it is decidable and the unique function that satisfies it is recursive. 

Proof (1) The theory T has only one standard model and no nonstan- 
dard ones, thus it has exactly one model. Suppose that T is not complete. 
Then there is a formula c~ such that neither a nor non-a belongs to T. 
Now, T is a theory, i,e., a deductively closed system, and therefore neither 
a not non-a  can be deducible from formulas belonging to T. Therefore 
each of the sets of formulas T + { a }  and T+{non-a}  is consistent and by 
the G/Sdel theorem it has a model. So there are two distinct models of T; 
contradiction. 

(2) Let T be categorical; hence, it has a model and therefore is 
consistent. Let T have no nonstandard models and let it be axiomatizable. 
By part 1, T is complete, and from consistency it follows that for each 
formula a either a or non- a (not both) belongs to T. The set of theorems 
of axiomatizable theory is recursively enumerable. Hence and from com- 
pleteness it follows that for any formula a it is possible to determine (in 
an effective way) whether a or non-a belongs to T. So T is decidable. Let 
m be any integer. Because T has no nonstandard models and is consistent, 
there is exactly one n such that formula f ( m ) =  n belongs to T. The theory 
T is decidable and therefore this n can be effectively found from m by 
merely generating T until the formula appears. Thus, if we accept Church's 
thesis, f is a recursive function. 
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